
A Novel Pattern Matching Algorithm in Genome
Sequence Analysis

Ashish Prosad Gope #1, Rabi Narayan Behera#2

#1M.Tech Student (4th Semester) Dept. of Information Technology, Institute of Engineering & Management,

Salt Lake, Kolkata, India
#2Asst. Professor, Dept. of Information Technology, Institute of Engineering & Management,

Salt Lake, Kolkata, India

Abstract— DNA sequences has been for years a great concern
for many research papers in Bio-Informatics. DNA sequence is
a long string of characters specifying the nucleotides presented
in the DNA. In bioinformatics the most well-known
application is DNA sequence detection. Stored DNA sequence
of various disease are retrieved and compared in order to
check for the existence of a disease. To search for the pattern a
well-established pattern matching algorithm is needed in order
to get the result at the cost of sufficient amount of time. We’ve
specifically referred the DNA sequences instead of any text
strings and implemented the algorithms upon it. This paper
evaluates four pattern matching algorithms’ performance and
then proposes a new algorithm based upon Rabin Karp
algorithm which ensures that character comparisons can be
eliminated from Rabin Karp algorithm. These algorithms look
for the specified pattern in a huge strand of DNA sequence.

I. INTRODUCTION
 Bioinformatics is an interdisciplinary research area that is the
interface between the biological and computational sciences. The
advent of electronic computers has arguably been the most
revolutionary development in the history of Science and
technology. The Ultimate goal of bioinformatics is to uncover the
wealth of Biological information hidden in the mass of data and
obtains a clearer insight into the fundamental biology of organisms.
This new knowledge could have profound impacts on fields as
varied as human health. Agriculture, the environment, energy and
biotechnology. There are many other applications of
bioinformatics, including predicting entire protein strands,
learning how genes express themselves in various species, and
building complex models of entire cells. As computing power
increases and our databases of genetic and molecular information
expand, the realm of bioinformatics is sure to grow and change
drastically, allowing us to build models of incredible complexity
and utility.
When we know a particular sequence is the cause for a disease, the
trace of the sequence in the DNA and the number of occurrences
of the sequence defines the intensity of the disease. As the DNA is
a large database, I propose String and Pattern matching algorithms
to find out a particular sequence in the given DNA. This paper
entirely focuses on a novel approach for detecting the patterns
present in the gene database. Pattern matching is a mechanism to
find out the exact location of a specified pattern, iff the pattern
exists in the text.
Before moving forward let us convey you about the structure of
our paper. We’ve discussed the preliminaries needed to move
forward in section 2, after that in section 3, disease caused by
genetic factors has been revisited. In section 4 we discussed
detection of disease using pattern matching and in section 5 the

central ideas of this paper i.e. the pattern matching problem has
been discussed. In subsequent sections i.e. in section 6, 7, 8 and 9,
the Brute Force, Knuth-Morris-Pratt algorithm, Boyer Moore
algorithm and Rabin Karp algorithm respectively has been
described. In section 10 we’ve described our idea to improve the
Rabin Karp algorithm and in section 11 the references used in this
paper has been given.

II. PRELIMINARIES
Every human has his/her unique genes. Genes are made up of
DNA. DNA is contained in each living cell of an organism, and it
is the carrier of that organism’s genetic code. The genetic code is a
set of Sequences which define what proteins to build within the
organism. DNA consists of two strands, each being a string of four
nitrogenous bases i.e. Adenine, Cytosine, Guanine and Thymine.
In a computer we represent each nitrogen base with a single
character: A for Adenine, G for Guanine and C for Cytosine and T
for Thymine. Thymine (T) & Adenine (A) always come in pairs.
Likewise, Guanine (G) & Cytosine (C) bases come together too.
Using these codes an entire DNA can be coded based upon their
nucleotides contained in a strand. For example:
ATGCGATATGCATGCATGCATAT. The term DNA
sequencing comprehends biochemical methods for determining
the order of the nucleotide bases, adenine, guanine, cytosine, and
thymine, in a DNA oligonucleotide [10]. Determining the DNA
sequence is therefore useful in basic research studying
fundamental biological processes, as well as in applied fields such
as diagnostic or forensic research.

The power and ease of using sequence information has
however, made it the method of choice in modern bioinformatics
analysis.[11]

III. DESEASE CAUSED BY GENETIC FACTORS

An unhealthy symptoms or a specific illness in the body is termed
as a disease. Disease refers to any unnatural condition of an
organism that affects normal functions. Diseasemay be referred to
disabilities, disorders, syndromes, symptoms[9].Genes are the
basic building blocks of heredity. They get passed from parent to
child. They hold DNA, the instructions for making proteins. A
genetic disease is any disease that is caused by an abnormality in
an individual's genome. Some of the genetic disorders are
inherited from the parents, while other genetic diseases are caused
by mutations in a pre-existing gene or group of genes.

IV. DETECTION OF DISEASE USING PATTERN MATCHING
Over the last decade, genetic studies have identified numerous
associations between chromosomal alleles in the human genome
and important human diseases. Unfortunately, these extending

Ashish Prosad Gope et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5450-5457

www.ijcsit.com 5450

findings of casual variants in the region of DNA is not a straight
forward task [8]. Causal variant identification typically involves
searching through sizable regions of genomic DNA in the locality
of disease-associated SNPs (single nucleotide
Polymorphism).When we know a particular sequence is the cause
for a disease, the trace of the sequence in the DNA and the number
of occurrences of the sequence defines the intensity of the disease.
As the DNA is a large database we need to go for efficient
algorithms to find out a particular sequence in the given DNA.

V. THE PATTERN MATCHING PROBLEM
In pattern-matching problem on strings, we are given a text string
T of length n and a pattern string P of length m, and want to find
whether P is a substring of T. The meaning of a “match” is that
there is a substring of text T starting at some index i that matches
pattern P, so that T[i]=P[0], T[i+1]=P[1] ... T[i+m-1]=P[m-1] i.e.
P= T[i..i+m-1]. Thus, the output from a pattern-matching
algorithm is either an indication that the pattern P does not exist in
T or the starting index in T of a substring matching P.[12]

T =” abacaabaccabacabaabb “

And the pattern string:

P = "abacab".

Then P is a substring of T. Namely, P = T [10...15]. There are
various pattern-matching algorithms. Here we are to review four
pattern matching algorithms and present an algorithm which is
based upon Rabin-Karp algorithm but modified. These efficient
algorithms can be used to trace the sequence of DNA in a huge
gene database. Following are the four algorithms which are
described below.

• Brute-Force
• Knuth-Morris –Pratt
• Boyer-Moore
• Rabin-Karp Algorithm

VI. BRUTE FORCE ALGORITHM
It is also known as Naive String Matching algorithm. It has no pre-
processing phase, needs constant extra space. It always shifts the
window by exactly one position to the right. It requires 2n
expected text characters comparisons. It finds all valid shifts using
a loop that checks the condition P[1....m]=T[s+1...s+m] for each of
the n-m+1 possible values of s. The algorithm is as following:

BRUTE_FORCE(T, P)
n ← length[T]
m ← length[P]
for s ← 0 to n − m

do if P[1 . .m] = T [s + 1 . . s + m]
then print “Pattern occurs with shift” s

The Brute force string-matching procedure can be presented as
shifting the pattern over the text, observing for which shifts all of
the characters of the pattern equal the corresponding characters in
the text, as illustrated in the following example.

T=ANPANMAN
P=MAN

VI.I. Complexity
 Procedure BRUTE_FORCE takes time O(m) in best case i.e.
when the pattern is found with in first m characters of text. And in
the worst case the pattern will be matched total (m (n-m+1)). For

example, consider the text string “AN” (a string of n a’s) and the
pattern “AM”. For each of the (n−m+1) possible values of the shift
s, the loop on line 4 to compare corresponding characters must
execute m times to validate the shift. The worst-case running time
is thus O(mn). The running time of BRUTE_FORCE is equal to
its matching time, since there is no preprocessing.

VI.II. Drawbacks Of This Approach
In O(mn) approach. if ‘m’ is the length of pattern ‘p’ and ‘n’ is the
length of string ‘S’. Suppose S=ATGATAATGAAG and
p=AATA.

Figure 1: Brute Force comparison process

j= 0 1 2 3 4 5 6 7 8 9 10
S= A T G A T A A T G A G
p= A T A A
 A T A A
 A T A A
 A T A A

In table 1 we’ve shown when mismatch is detected for the first
time in comparison of p[3] with S[3], pattern ‘p’ would be moved
one position to the right and matching procedure resumes from
here. Here the first comparison that would take place would be
between p[0]=‘A’ and S[1]=‘T’. It should be noted here that S[1]
had been previously involved in a comparison in 2nd iteration of
the loop in this algorithm. This is a repetitive use of S[1] in
another comparison. It is these repetitive comparisons that lead to
the runtime of O(mn), which made it very slow.

VII. KMP ALGORITHM
We now present a linear-time string-matching algorithm due to

Knuth, Morris, and Pratt. The basic idea behind the algorithm
discovered by Knuth, Morris, and Pratt is this: when a mismatch is
detected, our false start (which is the main drawback of Brute
Force algorithm) consists of characters that we know in advance
(since they’re in the pattern). Somehow we should be able to take
advantage of this information instead of backing up the pointer
over all those known characters

VII.I The Prefix Function For A Pattern

Fully skipping past the pattern on detecting a mismatch as
described in the previous paragraph won’t work when the pattern
could match itself at the point of the mismatch. To calculate the
positions for the pattern as to how much a pattern need to shift
itself so that the corresponding characters of text match with it.
The table is called as next table or sometimes failure function
(figure 2) for the pattern to be searched [14]. Consider another
example of this next table. This next[j] be the character position in
the pattern which should be checked next after such a mismatch,
so that we can slide the pattern (j - next[j]) places relative to the
text [6].

Figure 2: Next table
j 1 2 3 4 5 6 7 8 9 10

pattern A T G A T G A G A T

next -1 0 0 -1 0 0 -1 4 -1 0

Here next[j]= 0 means that we are to slide the pattern all the way
past the current text character. Now we shall discuss how to pre-
compute this table; fortunately, the calculations are quite simple,
and we will see that they require only O(m) steps. Now we

Ashish Prosad Gope et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5450-5457

www.ijcsit.com 5451

represent following the algorithm to calculate the next function or
prefix function:

next(p) //p signifies pattern
int i=0, j=-1;
next[i]=j;
for(i=0;i<m;i++)
{
 if(i==0)
 next[i]=j;
 else if(p[i]==p[j])
{
 next[i]=next[j];
 }
 else
 {
 next[i]=j;
 }
 while (j>=0 && p[i]!=p[j])
 j=next[j];

 j++;
}

This program takes O(m) units of time, as next[t] in the
innermost loop always shifts the upper copy of the pattern to the
right, so it is performed a total of m times at most. A slightly
different way to prove that the running time is bounded by a
constant times m is to observe that the variable starts at 0 and it is
increased, m- 1 times, by 1; furthermore its value remains
nonnegative. Therefore the operation next[j], which always
decreases j, can be performed at most m-1 times [6].

VII.II. The Pattern Matching Algorithm

The Knuth-Morris-Pratt matching algorithm is given in pseudo
code below as the procedure KMP-MATCHER. KMP-
MATCHER calls the auxiliary procedure next() to compute next
table. Below T & P signifies text & pattern respectively.

KMP-MATCHER(T, P)
n ← length[T]
 m ← length[P]
next=next(P) //array consisting of prefix values
j ← 0 //Number of characters matched.
 for k ← 1 to n //Scan the text from left to right.
 do while j > 0 and P[j + 1] ≠ T [k]
do j ← next[j] //Next character does not match.
if P[j + 1] = T [k]
 then j ← j + 1 //Next character matches.
 if j = m //Is all of P matched?
 then print “Pattern occurs with shift” k– m
 j ← next[j] // Look for the next match.
For convenience, let us assume that the input text is present in an
array text T[1…n], and that the pattern appears in pattern
P[1…m]. We shall also assume that m > 0, i.e., that the pattern is
nonempty. Let k and j be integer variables such that text T[k]
denotes the current text character and pattern P[j] denotes the
corresponding pattern character; thus, the pattern is essentially
aligned with positions p + 1 through p + m of the text, where k =p
+j [15].

VII.III. Complexity
The KMP algorithm works by turning the patterns given into a
machine, and then running the machine. It takes O(m) space and
time complexity in pre-processing phase, and O(n+m) time
complexity in searching phase (independent of the alphabet size).
KMP is a linear time string matching algorithm. [6]

VIII. BOYER-MOORE ALGORITHM
A significantly faster string searching method can be developed by
scanning the pattern from right to left when trying to match it
against the text. The Boyer-Moore algorithm (BM) was developed
by R.S.Boyer and J.C.Moore in 1977 [7]. The Boyer Moore
algorithm scans the characters of the pattern from right to left
beginning with the rightmost one and performs the comparisons
from right to left.

VIII.I Bad Character Rule
To convey the idea of the bad character rule, let us suppose that
the last (rightmost) character of pattern P is y and the character in
text T it aligns with is x, x ≠ y. When mismatch occurs, we can
safely shift P to the right so that the rightmost x in P is below the
mismatched x in T, and this is possible if the rightmost position of
character x exists in pattern P. This observation is formalized
below [16].
For a particular alignment of pattern P against text T, the
rightmost (n-i) characters of pattern P match their counterparts in
text T, but the next character to the left, P(i), doesn’t matches with
its counterpart, say in position k of T. The bad character rule says
that P should be shifted right by Max[1,i - R(T(k))] places.
The point of this shift rule is to shift P by more than one character
when possible. In the below example, T(5) = t mismatches with
P(3) and R(t) = 1 so P can be shifted right by two positions. After
the shift, the comparison of P and T begins again at the right end
of P.

Figure 3: Compare from right
 1 2

 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7

T A C T C T T G A T G C T C T T A C

P A G A T G A T

VIII.II. Extended Bad Shift Rule
When a mismatch occurs at position i of pattern P and the
mismatched character in text T is x, then shift P to the right so that
the closest x to the left of position i in P is below the mismatched
x in T.

VIII.III The Good Suffix Rule
Now we introduce another rule called the good suffix rule.
Suppose for a given pattern P and text T, a substring t of text T
matches a suffix of pattern P, but a mismatch occurs at the next
comparison to the left. Then find, if it exists, the rightmost copy t’
of t in P such that t0 is not a suffix of P and the character to the
left of t’ in P differs from the character to the left of t in P. Shift P
to the right so that substring t0 in P is below substring t in T (see
Figure 4). If t’ does not exist, then shift the left end of P. past the
left end of t in T by the least amount so that a prefix of the shifted
pattern matches a suffix of t in T. If no such shift is possible, then
shift P n places to the right. If an occurrence of P is found, then
shift P by the least amount so that a proper prefix of the shifted P
matches a suffix of the occurrence of P in T. If no such shift is
possible, then shift P by n places, i.e., shifting P past t in T.

Figure 4: case when good suffix rule applies
 0 1

 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8

T p r s t a b c t u b a b v q x r s t

 ^

P q c a b d a B d a b

 1 2 3 4 5 6 7 8 9 0

Ashish Prosad Gope et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5450-5457

www.ijcsit.com 5452

Good suffix shift rule, where character x of T mismatches with
character y of P. Characters y and z of P are guaranteed to be
distinct by the good suffix rule, so z has a chance of matching x.
When the mismatch occurs at position 8 of P and position 10 of T,
t = ab and t0 occurs in P starting at position 3. Hence P is shifted
right by six places resulting in the following alignment.

Figure 5: Shifting using good suffix rule

 0 1
 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8
T p r s t a b c t u b a b v q x r s t
 ^
P q c a b d a b a b
 1 2 3 4 5 6 7 8 9

Now in cases where we have matched the final m characters of
pattern P before failing, we clearly wish to shift our attention
down string by 1+m. So, L(i) is the largest index j less than n such
that Nj (P)≥|P[i..n]| (which is n - i + 1). L’(i) is the largest index j
less than n such that Nj(P) = |P[i..n]| = (n - i + 1).Now The pre-
processing stage must also prepare for the case when L’(i) = 0 or
when an occurrence of P is found. l’(i) equals the largest j ≤
|P[i..n]|, which is n-i+1, such that Nj (P) = j. So we can say that the
required shift will be max (L(i),L’(i)).

VIII.IV. The complete Boyer-Moore algorithm:
Given the pattern P, //pre-processing stage
Compute L’(i) and l(i) for each position i of P,
and compute R(x) for each character x ∈ ∑
//Search stage
k := n;
while k ≤ m do
 begin
 i := n;
 h := k;
 while i > 0 and P(i) = T(h) do
 begin
 i := i - 1;
 h := h - 1;
 end;
 if i = 0 then
 begin
 report an occurrence of P in T
ending at position k.
 k := k + n – l’(2);
 end
 else
 shift P (increase k) by the maximum
amount determined by the
 (extended) bad character rule and
the good suffix rule.
 end

Note that although we have always talked about shifting P", and
given rules to determine by how much P should be “shifted", there
is no shifting in the actual implementation. Rather, the index k is
increased to the point where the right end of P would be shifted".
Hence, each act of shifting P takes constant time [17].
The good suffix rule in Boyer-Moore method has a worst-case
running time of O(m) provided that the pattern does not appear in
the text. This was first proved by Knuth, Morris and Pratt [6].

VIII.V. Algorithm Complexity
The BM algorithm is successful at achieving a sub linear running
time in the average case, and if some special conditions occurred
then also was capable of O(n+m) in the worst case.

IX. RABIN-KARP ALGORITHM
Previous three algorithms which we’ve seen is based upon string
matching to see whether the pattern is matched with the text
portion or not. RABIN KARP matcher is one of the most effective
string matching algorithms. To find a numeric pattern ‘P’ from a
given text ‘T’. It first divides the pattern with a predefined prime
number ‘q’ to calculate the modular of the pattern P. Then it tests
the first m characters (m=|P|) from text T to compute remainder of
m characters from text T. If the remainder of the Pattern and the
remainder of the text T are equal only then we compare the
characters of the text portion with the pattern otherwise there is no
need for the comparison [1]. We’ve to repeat the process for next
set of characters from text for all the possible shifts which are
from s=0 to nm (where n denotes the length of text and m denotes
the length of P). So according to this two numbers n1 and n2 can
only be equal if

REM (n1/q) = REM (n2/q) [1]
After division we will be having three cases:-

• Case 1: Successful hit: - In this case if
REM (n1) = REM(n2) and also characters of n1 matches
with characters of n2.

• Case 2: Spurious hit: - In this case
REM (n1) = REM (n2) but characters of n1 are not equal
to characters of n2.

• Case 3: If REM (n1) is not equal to REM (n2), then no
need to compare n1 and n2.

For a given text T, pattern P and prime number q
T=234567899797797976534356678886756456890975545343434
24545475655454
P=667888
q=11
So to find out this pattern from the given text T we will take equal
number of characters from text as in pattern and divide the value
of these characters with predefined number q and also divide the
pattern with the same predefined number q. Now compare their
remainders to decide whether to compare the text with pattern or
not.
Rem (Text) =234567/11=3
Rem (Pattern) =667888/11=1
As both the remainders are not equal so there is no need to
compare text with pattern. Now move on to set of characters of
same length next from text and repeat the procedure. The Boyer
Moore Algorithm goes as follows:
Rabin_Karp_Matcher (T,P,d,q)
{
 n =Length (T)
 m= Length (P)
 t0=0
 p=0
 h=dm-1mod q
 for i=1 to m
 {
 p = (d * p + P[i]) mod q
 t0 =(d * t0 + T[i]) mod q
 }
 for s =0 to n-m
 {
 if ts=p
 {

//comparison for spurious hits
if P[1….m] = T[s+1…….s+m]

then print pattern matches at shift ‘s’
}
if s<= n-m

Ashish Prosad Gope et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5450-5457

www.ijcsit.com 5453

ts+1= (d(ts-h*T[s+1]) + T[s+1+m]) mod q
}

}
So the entire process can be written as follows: where Say P has
length L and S has length n. One way to search for P in S:

1. Hash P to get h(P).
2. Iterate through all length L substrings of S, hashing
those substrings and comparing to h(P).
3. If a substring hash value does match h(P), do a string
comparison on that substring and P, stopping if they do
match and continuing if they do not.

IX.I Numerical Example:
Let’s step back from strings for a second. Say we have P and S be
two integer arrays:
P = [5; 0; 3; 3; 0]
S = [4; 8; 5; 0; 3; 3; 0; 8]
The length 5 substrings of S will be denoted as such:
S0 = [4; 8; 5; 0; 3]
S1 = [8; 5; 0; 3; 3]
S2 = [5; 0; 3; 3; 0]
And so on …
We want to see if P ever appears in S using the three steps in the
method above. Our hash function will be:
h(k)= (k[0] * 104 + k[1] * 103 + k[2] * 102 + k[3] * 101 + k[4] *
100)mod m
Or in other words, we will take the length 5 array of integers and
concatenate the integers into a 5 digit number, then take the
number mod m. h(P) = 50330 mod m, h(S0) = 48503 mod m, and
h(S1) = 85033 mod m. Note that with this hash function, we can
use h(S0) to help calculate h(S1). We start with 48503, chop off
the first digit to get 8503, multiply by 10 to get 85033, and then
add the next digit to get 85033. More formally:
h(Si+1) = [(h(Si) - (105 * first digit of Si)) * 10 + next digit after Si]
mod m
We can imagine a window sliding over all the substrings in S.
Calculating the hash value of the next substring. In this numerical
example, we looked at single digit integers and set our base b = 10
so that we can interpret the arithmetic easier. To generalize for
other base b and other substring length L, our hash function is
h(k) = (k[0]bL-1 + k[1]bL-2 + k[2]bL-3.... k[L - 1]b0) mod m
And calculating the next hash value can be done by:
h(Si+1) = b(h(Si) – bL-1S[i]) + S[i + L] mod m
Following is the example taken from [15]:

Figure 6:

The above figure[15] illustrates (a) A text string. A window of
length 5 is shown shaded. The numerical value of the shaded

number is computed modulo 13, yielding the value 7. (b) The
same text string with values computed modulo 13 for each
possible position of a length-5 window. Assuming the pattern P =
31415, we look for windows whose value modulo 13 is 7, since
31415 ≡ 7 (mod 13). The first, beginning at text position 7, is
indeed an occurrence of the pattern, while the second, beginning at
text position 13, is a spurious hit. (c) Computing the value for a
window in constant time, given the value for the previous window.
The first window has value 31415. Dropping the high-order digit 3,
shifting left (multiplying by 10), and then adding in the low-order
digit 2 gives us the new value 14152.

X. IMPROVED IDEA:
Theory As we can see, spurious hit is an extra burden on algorithm
which increases its time complexity when we have to compare the
text with pattern and won’t be able to get the pattern at that shift.
So to avoid this extra matching, we’ve improved the Rabin Karp
algorithm slightly, called IRK algorithm which says that along
with remainders compare the quotients also. That is IRK checks
whether, REM(n1/q)=REM(n2/q) and QUOTIENT (n1/q) =
QUOTIENT (n2/q), where n1= pattern & n2=Text & q is the
prime number. So, according to this technique along with the
calculation of remainder, we will also find out the quotient and if
both remainder and quotient of text matches with pattern then it is
successful hit otherwise it is an unsuccessful hit or spurious hit
and then we can remove the possibility of comparing the spurious
hits. That means there is no extra computation of spurious hits if
remainder and quotient are same then pattern found else pattern
not found.
Basically the algorithm is same as the original rabin karp
algorithm, but with little modifications, which are shown in bold
italic font. The algorithm goes as follows:
IRK(T, P, d, q)
n ← length (T) //text length
m ← length (P) //pattern length
h ← dm-1 mod q
p ← 0
t0 ← 0
q_p ← 0 //quotient post hash calculation for pattern
//quotient post hash calculation for portions of text of size m
q_t ← 0
for i ← 1 to m //Preprocessing

do
temp_p ← (d*p + P[i])
q_p ← temp_p / q
p ← temp_p mod q
temp_t ← (d*t0 + T[i])
q_t ← temp mod q
t0 ← temp mod q

for s ← 0 to n – m // Matching
//comparison only if quotient matches, removal of spurious hit
 do if p = ts && q_p = q_t
 then print “Pattern occurs with shift” s
 if s < n – m
//quotient, post hash calculation of next m characters in text.

temp_t ← (d * (ts – T[s + 1] * h) + T[s + m + 1]) /
q

q_t ← temp_t /q
//subtracting LSB, Shifting and adding MSB then
ts+1 ← (d * (ts – T[s + 1] * h) + T[s + m + 1])mod q
ts= ts+1

X.I. Comparison using Graphs:
The results of our experiments are depicted in the graphs below. In
the first graphs we have represented the performance of the

Ashish Prosad Gope et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5450-5457

www.ijcsit.com 5454

algorithms with a fixed text file size of 1MB. Y axis represents
time in microseconds and X-axis represent the corresponding
algorithms.
Figure 7: comparison of algorithms with respect to 1 MB text file

Now we compare only between Rabin Karp and IRK algorithms
with the same text file size of 1 MB, in figure 8.
Figure 8: Comparison of Rabin Karp and IRK algorithms using
file size 1MB.

Rabin Karp scores the running time of 100750 microseconds and
IRK adjusted the running time within 95500 microseconds, both
upon same 1 MB text file. Below is the graph which depicts the
comparison between Rk and IRK algorithm using a 2MB file size.
Also we’ve compared the algorithm upon 2 MB text file size,
whose readings are as follows 260750 for Rabin Karp and 175250
for IRK algorithm.

Figure 9: depicts the comparison of Rabin Karp and IRK
algorithms using file size 2MB.

X.II Example of IRK algorithm:
T= ABBCABCA //text
P= BCA //pattern
q=13(say)
d=256 (for character)
Hash(P)= (66 * 2562 + 67 * 2561 + 65) mod q
p = 0 // hash value for pattern
q_p = 334045 //quotient

A B B C A B C A

 hash(ABB) = 0 // same hash q_t0 = 328965
 //but quotient different

A B B C A B C A

 hash(BBC) = 1
 q_t1 = 334026

A B B C A B C A

hash(BCA) = 0
q_t2 = 334045

A B B C A B C A

hash(CAB) = 7
q_t3 = 339047 // both matched

A B B C A B C A

hash(ABC) = 11
q_t1 = 328984

A B B C A B C A

hash(BCA) = 0 // hash matched
q_t2 = 334045 // quotient matched

Since the hash =0 and quotient = 334045 both matched. Only the
pattern BCA is matched. And hash(ABB) = 0 and quotient =
328965, which has not matched, ABB is not compared.

X.3 Time Complexity
In Best case doesn’t differ much from the original Rabin Karp
algorithm, but the in average case complexity can be improved
significantly. Due to imposing of constraint of matching the
quotient post hashing as well as the hash value of the text portion
of size m , reduction in comparison has been seen. Which reduces
the time complexity during worst case from O((n-m+1)m) to
O(nm+1). This time complexity is hugely depends on the selected
prime number, q. So selecting the right prime number gives this
algorithm a satisfiable optimization in terms of worst case time
complexity.

XI. CONCLUSION AND FUTURE SCOPES
This version of Rabin Karp algorithm can be used with Genetic
Algorithm in order to search for a pattern in to huge text files of
size >500MB. Implementation using GA can produce an
improved version of this algorithm for more sophisticated use and
can make the search even faster by using the genetic operators
such as selection, mutation, crossover etc. Our Future scope lies
among this thinking that it could be possible for us to implement
this IRK algorithm using GA for optimize the pattern analysis.
Further analysis and improvement of this algorithm is welcome
from any scholars.

REFERENCES
1. Richard M. Karp, Michael O. Rabin, Efficient Randomized pattern-

matching algorithms, International Business Machine, 1987
2. Roberto Ierusalimschy, A Text Pattern-Matching Tool based on

Parsing Expression Grammars, 2008
3. Rajesh S., Prathima S., Reddy L.S.S., Unusual Pattern Detection in

DNA Database Using KMP Algorithm, International Journal of
Computer Applications (0975 - 8887), Volume 1 – No. 22, 2010

4. Jiyeon Choi, Myka R. Ababon, Mai Soliman, Yong Lin, Linda M.
Brzustowicz, Paul G. Matteson, James H. Millonig, Autism
Associated Gene, ENGRAILED2, and Flanking Gene Levels Are
Altered in Post-Mortem Cerebellum- PLOS ONE, 2014

5. Gupta, A.R., and State, M.W. (2007) Recent Advances in the
Genetics of Autism. Biological Psychiatry 61, 429-437.

6. Donald E. Knuth, James H. Morris, Jr And Vaughan R. Pratt, FAST
PATTERN MATCHING IN STRINGS, Vol. 6, No. 2, June 1977,
SIAM J. COMPUT.

7. R. Boyer and J. Moore, A fast string searching algorithm”, CACM,
20, 10, 1977, pp.262-272.

Ashish Prosad Gope et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5450-5457

www.ijcsit.com 5455

8. Christopher B. Kingsley, Identification of Causal Sequence Variants
of Disease in the Next Generation Sequencing Era, Methods in
Molecular Biology, Volume 700, 2011, pp 37-46.

9. Melissa Conrad Stoppler MD (2014, Jan 15). Genetic Diseases
Overview [Online]. Available:
http://www.medicinenet.com/genetic_disease/article.htm.

10. DNA Sequencing, Wikipedia, http://en.wikipedia.org/
wiki/Genetic_analysis#DNA_Sequencing

11 .Biological Databases, http://biotech.fyicenter.com
/resource/Biological_databases.html

12. Michael T. Goodrich; Roberto Tamassia; David M. Mount, 2011.
Data Structures and Algorithms in C++, Second Edition

13. Akhtar Rasool Amrita Tiwari et al, (IJCSIT) Vol. 3 (2) , 2012,3394
– 3397, International Journal of Computer Science and Information
Technologies.

14. Sedgewick, Robert, 1984-Algorithms., ADDISON-WESLEY

PUBLISHING COMPANY
15. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford

Stein et al. 2009, 3RD edition, Introduction to Algorithms, MIT Press.
16. Dan Gusfield. COMPUTER SCIENCE AND

COMPUTATIONALBIOLOGY, University of California, Davis,
2007

17. Boyer-Moore Tutorial, The University of California, Davis,
http://www.cs.ucdavis.edu/~gusfield/ cs224f11/ bnotes.pdf, 2007

Ashish Prosad Gope et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5450-5457

www.ijcsit.com 5456

Ashish Prosad Gope et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5450-5457

www.ijcsit.com 5457

